<u>Topic 2 – Equilibria</u> <u>Revision Notes</u>

1) Equilibrium quantities

• The moles present at equilibrium can be worked out using simple algebra

Example 1

2 moles of nitrogen and 3 moles of hydrogen were reacted in a sealed vessel of volume 2 dm³ at a temperature of 700K. At equilibrium 1.6 moles of nitrogen remained. Calculate the moles of hydrogen and ammonia present in the equilibrium mixture.

	N2 +	3H ₂	⇒ 2NH ₃
Initial moles	2	3	0
Eqm moles	1.6	?	?

The equation says that for every 2 moles of NH_3 formed, 1 mole of N_2 and 3 moles of H_2 are used up. We can write expressions for the equilibrium moles in terms of x that will allow us to calculate the missing numbers of moles.

For N₂, start with 2 moles, x moles used up (one lot of N₂ in equation) For H₂, start with 3 moles, 3x moles used up (three lots of H₂ in equation) For NH₃, start with 0 moles, 2x moles formed (2 lots of NH₃ in equation)

	N2 +	3H₂ ≓	2NH ₃
Initial moles	2	3	0
Eqm moles	1.6	?	?
Eqm moles	2-x	3-3x	2x

We know that $1.6 = 2 \cdot x$, so x = 0.4Moles of H₂ at equilibrium is, therefore, 1.8 and moles of NH₃ at equilibrium is 0.8

	N2 +	3H₂ ≓	2NH₃
Initial moles	2	3	0
Eqm moles	1.6	1.8	0.8
Eqm moles	2-x	3-3x	2x

2) <u>The equilibrium constant, K_c</u>

• An equilibrium constant can be defined in terms of concentrations for the following reaction:

where a = moles of A etc

• It can be shown that:

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

where $[A] = \text{concentration of A in mol dm}^{-3} \text{ etc}$

 Once equilibrium moles are known they need to be converted into concentrations before being put into the K_c expression. Concentration = moles/volume (in dm³)

- If the volume is not known, use V to represent it and the V's will almost certainly cancel
- The units for the $K_{\rm c}$ can be determined by substituting and cancelling
- Continuing with example 1

		N2 +	3H₂ ≓	2NH₃
Initial r	noles	2	3	0
Eqm m	oles	1.6	1.8	0.8
Eqm m	oles	2-x	3-3x	2x
Conc		1.6/2	1.8/2	0.8/2
(mol dı	n⁻³)	= 0.8	=0.9	=0.4
Kc	= $[NH_3]^2/[N_2][H_2]^3$ = $0.4^2/(0.8 \times 0.9^3)$ = 0.274			
Units	•	iol dm ⁻³)		³ x (mol dm ⁻³) ³

3) Other points

- o Changes in concentration have no effect on the numerical value of K_c
- For an exothermic reaction, increasing the temperature decreases the magnitude of K_c. The equilibrium shifts in the endothermic or backward direction to remove the added heat
- For endothermic reactions, increasing the temperature increases the value of K_c. The equilibrium shifts in the endothermic or forward direction to remove the added heat
- Reducing the volume of the reaction vessel increases the pressure and may affect the position of equilibrium
- Increasing the volume of the reaction vessel decreases the pressure and may affect the position of equilibrium